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Abstract--A further subdivision of fold types 1A and 3 of Ramsay's geometrical classification is proposed. It is 
based on the occurrence of complementary fold shapes to some of the classes recognized. The parameters of the 
limiting fold types (1A2, 1B, 2 and 3B) are related to the dip angle by simple equations. 

Folds with strongly convergent isogons and thickened limbs (supratenuous folds) of subclass IA are subdivided 
into three types, with strongly (1A1), moderately (1A2) and slightly (1A3) thickened limbs, respectively. They 
commonly develop in diapiric or domal structures due to bending during vertical uplift. 

Folds with divergent isogons (class 3) are subdivided into types with slightly (3A), moderately (3B) and 
strongly (3C) divergent isogons. Folds of subclass 3B are complementary to parallel (subclass 1B) folds; the 
layers in type 3B folds wedge out at dip angles of 60 °, and form complex similar (class 2) folds with adjacent layers 
folded in type 1B folds. The dominant folding mechanisms related to layer-parallel (or oblique) compression 
control the thinning in the fold limbs and the formation mainly of folds of types 1B, 1C, 2, 3A and 3B. The 
extreme types 1A1 and 3C are very rare in natural rocks. 

INTRODUCTION 

THE development of a geometrical classification of folds 
based on the shape of a single folded layer in profile 
section (Ramsay 1967) plays an important role in the 
quantitative study of fold morphology and in elucidating 
the principal folding mechanisms. The classification is 
based on the variations of the relative orthogonal and 
axial surface-parallel thicknesses and on the dip isogon 
pattern (Ramsay 1967, pp. 359-372, Hudleston 1973, 
Ramsay & Huber  1987, pp. 347-363). 

Parallel (class 1B) and similar (class 2) folds were the 
first fold types to be recognized (Van Hise 1896). They 
are both simple cases, the variation of the layer thick- 
ness and the dip isogon angle being described by simple 
functions of the layer dip angle a. On some forms of 
graphical representation (Figs. 1-3) these two fold 
types plot as straight lines separating the fields of the 
other fold classes and subclasses. The fundamental 
classes 1 and 3 are characterized, respectively, by con- 
vergent and divergent dip isogons, and parallel isogons 
define similar (class 2) folds (Ramsay 1967). Folds with 
strongly convergent dip isogons (subclass 1A) were 
first recognized by Nevin (1931) as supratenuous folds 
(with decreasing layer thickness in the hinge area), and 
together with parallel and similar folds they were in- 
cluded in a three-fold classification (Willis & Willis 
1934, pp. 34-38). 

Analyses of the shapes of folded layers in natural 
rocks and model materials have demonstrated that some 
of the fold types are very common whereas others occur 
only rarely and in very special cases. The extreme fold 
types in Ramsay's classification (subclass 1A and class 3) 
show considerable variety, and may be further sub- 
divided on the basis of their geometrical properties and 
of their frequency of occurrence in natural rocks. The 
aim of the present paper is to compare the distributions 

of the different fold types in natural rock sequences, and 
to propose their further subdivision. 

FOLDS WITH STRONGLY CONVERGENT DIP 
ISOGONS (SUPRATENUOUS FOLDS) (CLASS IA) 

The difference between classes 1 and 3 becomes 
obvious when comparing the variation of the dip isogon 
angle q0. Each isogon joins the points on the folded layer 
surfaces which have the same dip (dip angle a) ,  and the 
isogon angle is defined as the angle between the isogon 
and the perpendicular to the tangent to the folded 
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Fig. 1. Plot of the dip isogon angle ~ vs the angle of dip a. Af ter  
Hudleston (]973) with additional subdivision of fold types 1A and 3. 

The field of fold types most frequent in natural rocks is stippled. 
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2.0 

and 

tan a da - dt~ (1) 
t~ 

t~ = sec a (2a) 

T" = sec2a. (2b) 

Correspondingly (Figs. 1, 2 and 3) subclass 1A may be 
subdivided (Zagor6ev 1974) into three types: 1A1 (with 
greatly thickened limbs), 1A2 (with moderately thick- 
ened limbs) and 1A3 (with slightly thickened limbs). 

Most natural class 1A folds belong to type 1A3, close 
to subclass 1B (Fig. 5). The relative orthogonal and 
axial-surface parallel thicknesses (Figs. 2, 3 and 5) 
increase rapidly in the limbs of type 1A2 folds, and the 
dip isogon becomes perpendicular to the axial surface at 
a dip angle of 45 ° (Fig. 5). The formation of type 1A1 
folds meets considerable geometrical constraints at 
higher dip angles. Therefore, the probable range of 
natural subclass 1A folds is normally limited by the curve 
t" = sec a (and T" = sec2a) with limb dips usually not 
exceeding 45 ° . 

0 30 ° [.5 ° 60° 90 ° Ct 

Fig. 2. Plot of  or thogonal  thickness t" vs the angle of dip a .  Af ter  
Ramsay  (1967, fig. 7-19) with additional subdivision of fold types 1A 
and 3. The field of fold types most  c o m m o n  in natural rocks is stippled; 
the field of some diapiric folds is hatched. Curve @ corresponds  to 

2 cos 2 a - 1 c~- 
COS a 

surfaces. The sign of the dip isogon angle is defined (Fig. 
4) by convention (Hudleston 1973). The majority of 
natural folds are characterized by a positive dip isogon 
angle, q~, when the dip angle, a, is positive, and the 
straight line cp = a on Fig. 1 divides two symmetrical 
fields which correspond to class 3 (q? > a) and subclass 
1C (q~ < a). The field of folds with strongly convergent 
dip isogons (subclass 1A) is characterized by negative 
values of c~ when a is positive, and remains undivided. 
However, the geometrical properties of these folds vary 
considerably, and field 1A may be subdivided in a 
similar manner to the division of the field of folds with 
positive dip isogon angles. 

If we consider the case -q~ = a,  which is symmetrical 
with respect to q? = a (class 2 folds), the relative 
orthogonal thickness of these 1A folds may be computed 
as a special case from the expression found by Hudleston 
(1973) 

(ldt'a] 
-q) = a = tan -1 \t'~ da] 

o r  

FOLDS WITH DIVERGENT DIP ISOGONS 
(CLASS 3) 

Buckled competent layers usually form class 1B (par- 
allel) folds or folds close to 1B of 1A3 or 1C types. An 
increasing superimposed pure shear ('flattening') com- 
ponent modifies their shapes towards similar (class 2) 
folds. 

The incompetent layers in a multilayer sequence, 
when buckled, have to accommodate their shape to the 
shape of the buckled competent layers, forming class 3 
folds with divergent dip isogons. The only fold geometry 
that can penetrate an infinite number of layers is the 
similar (2) class, and in multilayers the geometries (1C 
and 3 types) of the individual layers tend to alternate and 
complement each other in such a manner that the overall 
geometry is close to the similar type (Ramsay 1967, pp. 
430-436). The best and simplest way to subdivide class 3 
folds is to find the complementary shape to the pure 
buckle parallel folds (subclass 1B) of the competent 
layers. 

Let us take a pair of layers of equal thickness (taken as 
unity). If the pair is folded (Fig. 6) to form a similar 
(class 2) fold with axial-surface parallel relative thick- 
ness T" = 1 (i.e. with total thickness of the two layers 
equal to 2), and the competent layer forms a typical 
parallel fold of 1B type, the variation of T~ in the 
incompetent layer may be found by subtracting (from 
2.0) the axial-surface parallel thickness of the competent 
layer, T" = sec a, or 

Td = 2 - sec a. (3) 

This fold shape corresponds to the curve shown on 
Fig. 6, and the combination of the two folded layers 
corresponds to a similar (class 2) fold for dip angles (a) 
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Fig. 3. Profiles of different fold types developed above a sinusoidal single surface with maximum dip angle of 60 °. Inset: 
plot of the thickness parallel to the axial surface T~, vs angle of dip a (after Ramsay 1967, fig. 7-20), with additional 

subdivision of fold types 1A and 3. Curve b corresponds to T~, = 2 - sec2a. 
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Fig. 4. Sign convention for the dip isogon angle, co, in the case of a positive dip angle, a (after Hudleston 1973). 
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Fig. 5. Profile section of a type 1A2 fold with the position of dip isogons and the complementary type 3C fold (stippled, in 
the right part) shown. Profile section (stippled, in the left part) of the type 1A2 fold, with possible upper surfaces of types 

1A1, 1A3 and 1B folds. 

from 0 ° to 60 °. At ct = 60 ° the incompetent layer thins out 
completely (Ramsay & Huber  1987, p. 358), and this is 
the limiting curve for the complementary (to subclass 
1C) class 3 folds. The curve corresponding to these folds 
divides the field of class 3 into three subclasses: 

--subclass 3A: folds with slightly divergent isogons, 
T" > 2 - sec a; 

--subclass 3B: folds with moderately divergent iso- 
gons, 

T ' = 2 - s e c a ,  t ' = 2 c o s a -  1 

tan a 
tan cp = 2 cos a - 1 (4) 

Fig. 6. Profile section of two folds of subclasses 1B and 3B in layers 
with equal axial-surface parallel thickness, with dip isogons shown for 
10, 20, 30, 40 and 50 ° (in the right part). The two layers complement 
each other to form a similar fold (stippled) with the dip isogons of a 

similar fold (left). 

--subclass 3C: folds with strongly divergent isogons, 
T~ < 2 - seca .  

The parameters of the mutually complementary 1C 
(with the extreme type 1B) and 3A (with the extreme 
type 3B) folds may be most readily studied in cuspate-  
lobate folds. 

GEOMETRICAL FEATURES OF CUSPATE- 
LOBATE FOLDS 

Cuspate-lobate folds formed in competent layers tend 
towards a perfect circular (concentric) shape (subclass 
1B) with a maximum layer-parallel shortening of 36% 
(De Sitter 1956, Ramsay 1967, p. 387), and a wavelength 
which is close to W = 2t. The cusps in the competent 
layers represent synforms concentrated (in cross- 
section) at single points on the upper folded boundary, 
and antiforms concentrated at single points on the lower 
folded boundary. The points in both cases coincide with 
the inflexion points. Thus the whole upper boundary 
consists of lobate antiforms and point-concentrated syn- 
forms, and the lower boundary, of lobate synforms and 
point-concentrated antiforms. Cuspate-lobate folds 
formed in an incompetent layer of thickness t enclosed in 
a more competent medium tend to form class 3 folds. 

Let us now consider the case (Fig. 7) of perfect 
cuspate-lobate folds for which the orthogonal thickness 
of the layer in the axial surface equals A + n A  ( n  may be 
any number from 0 to infinity). In the case of a com- 
petent bed enclosed in an incompetent matrix, 

1 + n c o s a  
t~ - , (5) 

l + n  
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Fig. 7. Profile sections of perfect cuspate-lobate folds, (a) in interlayered competent and incompetent layers, and (b) & (c) 
showing geometric parameters in the incompetent (b) and competent (c) beds. 

and with n approaching zero, t" is close to 1, and the 
folds develop a perfect parallel (concentric) shape (Figs. 
7a & c). Increase of n (i.e. increase of the thickness 
beyond the zone of contact strain influence of the folded 
boundary) has the same effect as a superimposed pure 
shear, and as n approaches infinity the effect of cos a on 
the expression increases rapidly and the fold geometry 
becomes close to that of a similar (class 2) fold. 

The opposite is observed in perfect cuspate-lobate 
folds in the incompetent layers (Fig. 7b). The variation 
of the relative orthogonal thickness is given by 

, (n + 2) cosa  - 1 
ta = (6) 

l + n  

and the perfect cuspate-lobate folds at n = 0 correspond 
to 

t ' =  2 c o s a -  1. 

The tangent at a = 60 ° passes through the cusp point, 
and the layer is totally reduced with thickness equal to 
zero. 

Increase of n in perfect cuspate-lobate folds (Fig. 8) 
results in t" tending towards cos a, that is the corre- 
sponding folds become closer to similar (class 2) folds as 
in the case of flattening due to superimposed pure shear. 
This is the field of type 3A folds (with slightly divergent 
isogons). 

Cuspate-lobate folds (including the perfect varieties) 
are widespread in different geological environments. 
Examples are found in the quartzo-feldspathic gneissic 
bands (leptynites) interlayered in migmatitic complexes. 
Strain partitioning in the competent layers may follow 
different models. One possibility (Fig. 9) is a combi- 
nation of a tangential distribution with a neutral surface, 
and partial flexural flow in the inflexion area. If the 
neutral surface (or a surface close to it) is marked in the 
rock in some way, the two parts of the layer may be 
considered as separate beds forming a composite layer 
folded in a concentric manner. In this case, the folds in 
the two beds form shapes complementary to each other 
(Fig. 10): the upper bed develops a shape close to a type 

1A2, and the lower bed a shape with divergent isogons of 
type 1C but close to a similar (class 2) type at low dip 
angles. Thus, folds of types 1A2 and 2 complement each 
other to form folds of type lB. 

POSSIBILITIES FOR FURTHER SUBDIVISION 

The geometric classification of folds according to the 
shape of a single folded layer is based on the recognition 
of boundary cases in the natural range of geometries 
and, as for any other classification, it may be regarded as 
an attempt to find some order in the natural diversity of 
fold shapes. There is a wide choice of simple functions of 
the dip angle, a, that could be chosen, but the boundary 
types already recognized (1A2, 1B, 2 and 3B) seem to be 
the most appropriate because they represent clearly 

1.0 

0.5 

30° hS° 60° O. 90° 

Fig. 8. Variation of t~ with angle of dip a in perfect cuspate-lobate 
folds within competent and incompetent layers with different values of 

parameter n. 
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Fig. 9. Possible strain ellipses (left) and trajectories of the X (maxi- 
mum principal strain) axis (right) in a perfect cuspate-lobate fold in 
competent  (stippled) and incompetent  layers folded by a combination 
of a tangential strain distribution with a neutral surface, and partial 

fiexural flow in the inflexion area. 

defined morphological features which can be easily visu- 
alized and characterized. The principle introduced when 
recognizing the subclass 3B could be applied also to 
subclass 3C by finding a fold type complementary to type 
1A2 (Fig. 5). The variation of T"  would be given by the 
function 

and 

T"  = 2 - cos 2 a (7a) 

cos 2 a - 1 
t" = 2 (7b) 

COS a 

The practical value of such a subdivision of subclass 
3C is doubtful. Subclass 1A (supratenuous) folds form in 
a different folding environment than subclass 3C folds, 
and alternation of folds of type 1A and 3C to form 
similar (class 2) compound folds is not likely to occur. 
Layers corresponding to equations (Ta) and (Tb) thin out 
completely at a dip angle of 45 ° (Figs. 3 and 5), limiting 
the natural occurrence of such folds. 
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Fig. 10. Variation of t~, in the fold shown in Fig. 9. The geometry of 
the folded competent  layer is of a concentric (parallel) 1B type. The 
antiforms in the sublayer above the neutral surface, and the synforms 
in the sublayer below the neutral surface correspond to a type 1A fold 
close to 1A2, but beginning in the field of IA1 and ending in the field of 
1A3 (curve a). The  synforms above the neutral surface and the 
antiforms below the neutral surface (curve b) correspond to type 1C 
folds, but at dip angles from 0 to 30 ° pass from the field of 3C, close to 

3B, through the field of 3A into the 1C field• 

OCCURRENCE OF DIFFERENT FOLD TYPES IN 
SOME NATURAL ROCK SEQUENCES 

Numerous studies in folded rock sequences have 
shown the importance of Ramsay's geometrical fold 
classification, as for example, when discussing the cleav- 
age attitude in folds (Treagus 1982). 

The morphological types of folds recognized in natu- 
ral rocks depend largely upon the folding mechanisms 
involved. Therefore, many authors have tried to intro- 
duce a combined classification, sometimes confusing 
geometrical and genetic properties. 

Mechanisms of folding (Van Hise 1896, Ramberg 
1961, 1963, Donath & Parker 1964, Ramsay 1967, Ram- 
say & Huber 1987) are usually related either to buckling 
under conditions of layer-parallel (or at an oblique 
angle) shortening or to axial-surface parallel shear and 
slip. Both mechanisms form periodic folds and lead to 
thinning of the layers in the fold limbs with respect to the 
hinges. These processes may be amplified by a super- 
imposed homogeneous 'flattening' strain. 

Although a special case, cuspate-lobate folds are 
widespread (Ramsay 1967, Ramsay & Huber 1987) in 
different geological environments. They are formed by 
the buckling of multilayers with a competence contrast 
between the adjacent layers, and very often at the 
boundaries between comparatively rigid basement and 
ductile cover. These mechanisms favour the develop- 
ment of fold types 1B, 1C, 2, 3A and 3B. A folding 
mechanism of lesser importance is the bending of over- 
lying layers by rising diapirs, granite domes, rigid base- 
ment blocks (stamp folds), etc. This process favours the 
development of subclass 1A (mainly 1A3 to 1A2) folds 
(Fig. 11). 

In a number of morphological fold types, such as 
chevron folds, the folds become 'locked' (Ramsay 1967, 
pp. 436-456) at a given dip angle (most commonly, c a  
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Fig. 12. Variation of T" with a in Cambrian red slates, Dinorwic 
Quarry, North Wales. 

60 °) of the folded layer. A similar locking mechanism 
may be expected also for the isogon angle, q% which 
rarely is higher than 45 ° (especially in the 1A folds). 

The purple slates in the Cambrian slate belt of North 
Wales possess a considerable thickness and homogen- 
eity. The folds often show (Fig. 12) alternating type 1C 
and 3A shapes, although the competence difference 
between adjacent layers is usually very low. 

Folds in the red beds of the Permian Skrino Formation 
and the Lower Triassic Marvodol Formation in south- 
west Bulgaria (Fig. 13) belong to subclass 1C and (par- 
tially) to subclass 3A. The formations consist of 
alternating competent and incompetent layers, in the 
basal parts of the Marvodol Formation with a predomi- 
nance of competent quartz conglomerates and sand- 
stones. The Upper Triassic red beds of the Kom~tica 
Formation are dominated by incompetent layers, and 
are highly strained due to Late Triassic and Mid Creta- 
ceous folding and thrusting. Correspondingly, folds of 
subclasses 1C and 3A (close to class 2) occur with almost 
equal frequency. 

The development of folds in migmatized gneiss- 
amphibolite complexes (e.g. in the Rhodope Massif, the 
Ogra~den block of southwest Bulgaria, etc.) leads to 
particularly complicated layer morphologies (Fig. 14). 
Besides the alternation of folds of subclasses 1C and 3A 

typical of multilayers with beds of different rheological 
properties, some folds are characterized by a rapid 
decrease of layer thickness at dip angles between 30 ° and 
50 ° in such a manner that class 1 folds change to type 3A, 
and type 3A folds become modified into types 3B or 3C. 
In the limbs near the inflexion points, at dip angles 
between 50 ° and 70 ° , the layer thickness increases, and 
the fold type returns to the character it has in the hinge 
area. Possible variations of this kind are, for example 
(with increasing dip angle a): 

1A-1B-1C-1B-1A; 
1A-1B-1C-2-3A-2-1C; 
1C-2-3A-3B-3C-3B-3A. 

Such changes may be analysed (Ramsay 1967, pp. 
365-371) in terms of the variation of the rate of change of 
t~, with dip angle a (dt 'Jda) ,  and even of the variation of 
the second derivative of the relative orthogonal thick- 
ness t" with a. The structure of a fold very similar to that 
shown by curve a in Fig. 14 may be classified accordingly 
as a divergent isogon fold compounded with a conver- 
gent (1A) isogon fold (Ramsay 1967, figs. 7-27 and 7-28, 
table 7-4). Natural reasons for such a variation may be 
sought in: (i) primary changes in layer thickness; (ii) 
changes in the competence contrast (relative rheology) 
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Fig. 13. Variation of t'~ with a in Permian and Triassic red beds in southwest Bulgaria. 

Table 1. Geometrical classification of folds (after Ramsay 1967), with additional subdivision of types 1A and 3 based on layer thickness 
distribution and dip isogons 

Fold type Dip isogons Layer thickness in the limbs Variation of ~ Variation of t" Variation of T" 

Class 1 
1A 

(supratenuous) 
1A1 
1A2 
1A3 
1B 

(parallel) 
1C 

Class 2 
(similar) 

Class 3 

3A 

3B 

3C 

Convergent ~ < a t" > cos a T~ > 1 
Strongly convergent Increasing ~ < 0 t~ > 1 T" > sec a 

Strongly increasing - ~  > a t" > sec a T~ > sec2a 
Moderately increasing -q~ = a t'~ = sec a T~ = sec2a 
Slightly increasing - ~  < a sec a > t~ > 1 secEa > T" > sec a 

Moderately convergent Constant orthogonal q0 = 0 t" = 1 T" = sec a 
thickness t 

Slightly convergent Slightly decreasing without a > q~ > 0 1 > t" > cos a sec a > T" > 1 
wedging 

Parallel Constant axial-surface ~ = a t" = cos a T~, = 1 
thickness T 

Divergent Decreasing with wedging q~ > a cos a > t" 1 > T" 

tan ct 
Slightly divergent Wedging at a > 60 ° tan qJ < 2 cos a - I cos a > t" > 2 cos a - 1 1 > T~ > 2 - sec a 

tan a 
Moderately divergent Wedging at a = 60 ° tan q9 - 2 cos a - 1 t" = 2 cos a - 1 T'~, = 2 - sec a 

tan a 
Strongly divergent Wedging at a < 60 ° tan q~ > 2 cos a - 1 2 cos a - 1 > t~ 2 - sec a > T~, 

d u e  t o  c h a n g e s  in  t h e  P - T  c o n d i t i o n s ;  ( i i i )  s i m p l e  s h e a r  

in  t h e  f o l d  l i m b s  a t  c r i t i ca l  v a l u e s  ( 3 0 - 5 0  ° ) o f  t h e  d ip  

a n g l e ;  ( iv)  r e d i s t r i b u t i o n  o f  m o b i l e  c o m p o n e n t s  

( q u a r t z ,  K - f e l d s p a r ,  e t c . )  d u r i n g  t h e  s e v e r a l  s u p e r -  

i m p o s e d  f o l d i n g  e v e n t s ;  a n d  (v)  a s e l e c t i v e  r e s p o n s e  to  

p u r e  s h e a r .  E v i d e n c e  f o r  t h e s e  k i n d s  o f  p r o c e s s e s  h a s  

b e e n  f o u n d  in  al l  m i g m a t i t i c  t e r r a i n s  s t u d i e d ,  a n d  t h e  

d e v e l o p m e n t  o f  a f o l d  o r  f o l d  s e t  c o m m o n l y  c o n t i n u e s  

t h r o u g h  s e v e r a l  m e t a m o r p h i c  e v e n t s  u n d e r  c o n s i d e r a b l e  

c h a n g e s  in  P - T  c o n d i t i o n s  a n d  r h e o l o g i c  b e h a v i o u r  o f  

t h e  r o c k s .  

C O N C L U S I O N S  

T h e  o c c u r r e n c e  o f  t h e  v a r i o u s  fo ld  t y p e s  o f  t h e  g e o -  

m e t r i c a l  f o ld  c l a s s i f i c a t i o n  (F igs .  1, 2 a n d  3, T a b l e  1) in  

m a n y  s e d i m e n t a r y  a n d  m e t a m o r p h i c  c o m p l e x e s  is c o n -  

t r o l l e d  m a i n l y  b y  t h e  f o l d i n g  m e c h a n i s m s  m o s t  c o m m o n  

u n d e r  n a t u r a l  c o n d i t i o n s .  T h e  n e w l y - p r o p o s e d  s u b -  

c l a s se s  1 A 2  a n d  3 B ,  t o g e t h e r  w i t h  t h e  w e l l - k n o w n  p a r a l -  

lel  ( s u b c l a s s  1B)  a n d  s i m i l a r  (c lass  2) t y p e s  a r e  l i m i t i n g  

fo ld  s h a p e s  w h i c h  c o r r e s p o n d  t o  s i m p l e  f u n c t i o n s  o f  t h e  

d i p  a n g l e .  T h e y  s e p a r a t e  t h e  o t h e r  f o ld  t y p e s ,  w h i c h  
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Fig. 14. Variation of t~ with ct in folded migmatites and amphibolites 
of the Ograzdenian Supergroup, southwest Bulgaria. Curve a is 

discussed in the text. 

have more variable parameters. The formation of the 
extreme types 1A1 and 3C is unlikely to occur under 
natural conditions, and may be expected only in very 
rare cases, at low to moderate dip angles. Compound 
folds with changing layer morphology are usually related 
to a change in the strain field and in the rheologic 

behaviour during several deformational events which 
have modified the primary fold shape. 
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